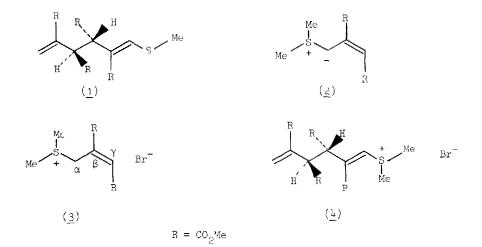
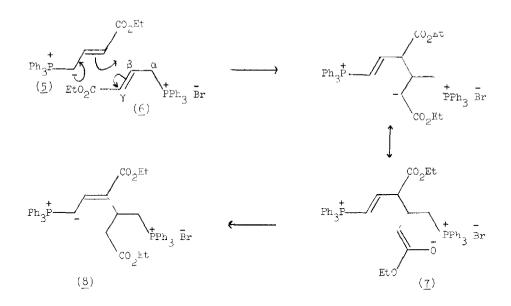
0040-1039/20/1022-41998-2.00/0

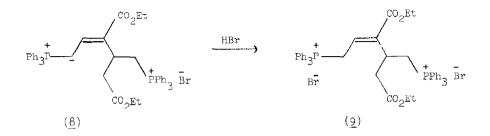

A STLREOSPECIFIC PHOSPHONIUM (LID.-SALT COUPLING REACTION

Martin W Bredenkamp, Johanna S Lesch, Johan S Malherbe, Eva M Molnar, and David F Schneider*

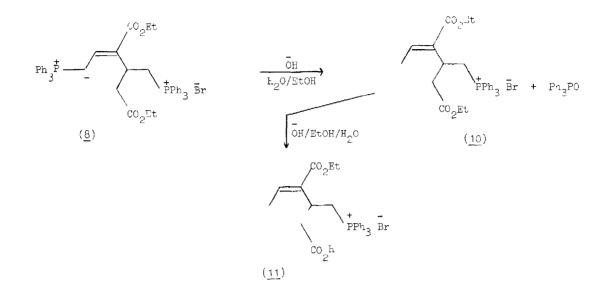
Chemistry Departmert, University of Stellenbosch, Stellenbosch 7600, Republic of South Africa


<u>Abstract</u> The stereospecific formation of a prosphonium ylide-salt *yia* the stereospecific coupling of an allylic phosphonium ylide with the corresponding prosphonium salt is described

In recent contributions¹⁻⁷ from this laboratory a stereospecific sulphonium ylide-salt coupling reaction, leading to the formation of the vinyl sulphide (<u>1</u>) via Michael addition of the sulphonium ylide (<u>2</u>) to the sulphonium bromide (<u>3</u>), followed by demethylation of the resulting salt (<u>4</u>) by bromide ior, was communicated

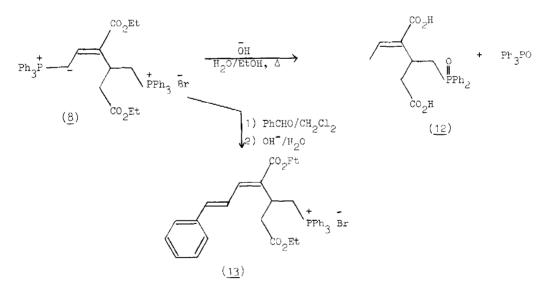

As an extention of these investigations, it was found that a related coupling reaction took place when a vigorously stirred solution of the phosphonium salt ($\underline{6}$) in dichloromethane was treated with one mole equivalent of aqueous sodium hydroxide, to produce the dimeric phosphoniu ylide-salt ($\underline{8}$)** as bright yellow crystals in 50% yield. Under these reaction conditions the phosphonium ylide ($\underline{5}$) was formed as a by-product in only 20% yield

**All new compounds exhibited satisfactory analytical data Proposed structures were rigorously substantiated by extensive ¹H and ¹³C nmr studies and off-resonance decoupling experiments



The formation of the ylide-salt $(\underline{8})$ under these circumstances can be rationalized as being the result of a Michael addition of the phosphonium ylide $(\underline{5})$ to the phosphonium salt $(\underline{6})$, followed by *trans*-ylidation of the intermediate product $(\underline{7})$. In comparison with the above-mentioned sulpronium ylide-salt coupling reaction where the ylide ($\underline{2}$) attacked the salt ($\underline{3}$) solely at the γ -carbon atom, it is clear that the absence of a second alkoxycarbonyl substituent at the β -carbon atom of the phosphonium salt ($\underline{6}$) inhibited nucleophilic attack oy the phosphonium ylide ($\underline{5}$) at the γ -carbon atom of the salt ($\underline{6}$)

The ylide-salt character of the coupling product $(\underline{8})$ was verified by the formation of the colourless diphosphonium salt $(\underline{9})$ upon treatment with aqueous hydrobromic acid, and the precipitation of silver promide when silver notrate was added to an aqueous solution of $(\underline{8})$



Selective alkaline hydrolysis of the coupling product $(\underline{8})$ with one mole equivalent of sodiumhydroxide in 80% ethanol⁸ produced one mole of triphenylphosphine oxide and a mixture of the (F)-diester (<u>10</u>) and the (E)-monoester (<u>1</u>)⁹ The preferential saponification of the "aliphatic" ethoxy carbonyl group in the presence of an "olefinic" ester substituent is in accord with previous findings ¹²,¹³

Alkaline hydrolysis of the ylide-salt $(\underline{8})$ under more drastic reaction conditions (5 mole equiv of alcoholic NaOH, reflux 15 b) produced as expected, one mole equivalent of triphenylphosphine oxide and the (E)-dipherylphosphine oxide (12) as the sole cleavage products ^{10,11}

Final proof of the ylide structure of the coupling product $(\underline{8})$ was provided by its condensation

with benzaldehyde in a Wittig reaction to produce the (E,E)-phosphonium bromide (<u>13</u>) as the only product However, no condensation took place at the phosphonium centre, even when (<u>3</u>) was treated with aqueous base in the presence of an excess of benzaldehyde in two-phase reaction ¹⁴

The coupling product $(\underline{8})$ was also produced in $\underline{60} \pm a + 2\mu$ yield, respectively, c, reaction of a ± 1 mixture of the phosphonium bromide $(\underline{6})$ and the ylide $(\underline{5})$ in dichloromethane, and upon treatment of a solution of a salt $(\underline{6})$ in dichloromethane with 0,5 moles of aqueous sodium hydroxide. These results provide decisive proof in favour of the phosphonium ylide-salt coupling mechanism for the formation of the dimenic product $(\underline{8})$

The reaction conditions for the formation of the coupling product $(\underline{\delta})$ can very usefully be adapted to produce the phosphonium $(1 \pm \alpha) (\underline{\delta})$ instead of $(\underline{\delta})$. Slow, synchronised mixing of one mole each of aqueous sodium hydroxide and a solution of the phosphonium bromide $(\underline{\delta})$ in dichloro methane, produced the pure ylide $(\underline{\delta})$ in ca 80% yield without concomitant formation of the ylide salt $(\underline{\delta})$

Financial support by the Sout African Courcil for Scientific and Industrial Research and the University of Stellenoosch is gratefully acknowledged

REFERENCES

1	JE Baldwin, JA Walker, AJH Labuschagne, and DF Schneider, <i>Chem Comm,</i> 1971, 1382
2	CF Garbers, AJH Labuschagre, CJ Meyer, and DF Schneider, JCS Parkin 1, 1973, 2016
3	AJH Labuschagne, CJ Meyor, HSC Spies, and DF Schneider, JCS Perkin I, 1975, 2129
4	DF Schneider, S Afr J Sci, 1975, $\frac{71}{}$, 175
5	AJH Labuschagne, JS Malherbe, CJ Meyer, and DF Schneider, Tetrahedron Letters, 1976, 3571
6	CJ Meyer and DF Schneider, JCS Perkin I, 1977, 1073
7	AJH Labuschagne, JS Malherbe, CJ Meyer, and DF Schneider, JCS Perkin I, 1978, 955
8	HJ Bestmann and B Arnason, Cham Bar, 1962, <u>95</u> , 1513
9	A Schnell, JG Dawber, and JC Tebby, JCS Perkin II, 1976, 633
10	M Zanger, CA van der Werf, and WE McEwen, J Amer Chem Soc, 1959, <u>81</u> , 3806
11	GW Fenton and CK Ingold, J Chem Soc, 1929, 2342
12	EA Halonen, Acta Chem Scand, 1955, <u>2</u> , 1492
13	M Balakrishnan, G Venkoba Rao, ard N Venkatasubramanian, J Indian Chem Soc, 1974, 51, 537
14	G Markl and A Merz, Synthesis, 1973, 295

(Received in UK 12 August 1980)

4202